Solar-Reports:

Forschungsagenda liefert eine Vision
für die Photovoltaik in Europa

Die Europäische Photovoltaik-Technologieplattform hat im Juni 2007 eine strategische Forschungsagenda veröffentlicht. Das Dokument hat das Ziel, Europas weltweite Führungsrolle in der Photovoltaik zu festigen und setzt kurz-, mittel und langfristige Forschungsprioritäten. Die "Strategic Research Agenda" (SRA) soll sowohl eine bedeutende Rolle spielen, um Richtlinien für das neue 7. Rahmenprogramm für Forschung in Europa zu formulieren als auch für nationale Programme. Die Botschaft der SRA ist eindeutig: Solarstrom kann in Süd-Europa bis 2015 wettbewerbsfähig mit konventioneller Stromerzeugung sein - und bis 2020 in fast ganz Europa.

Solar-Report als PDF-Dokument

Qualitätskontrolle an CIS-Modulen bei Würth Solar.
Foto: Qualitätskontrolle an CIS-Modulen bei Würth Solar.
Quelle: Würth Solar

Die Wettbewerbsfähigkeit (Grid Parity) ist laut Technologieplattform durch eine starke Marktentwicklung zu erreichen - wenn die nötigen Markteinführungsinstrumente in so vielen europäischen Ländern wie möglich eingeführt sind, wie beispielsweise das deutsche Erneuerbare-Energien-Gesetz (EEG). In diesem Fall erwartet die European Photovoltaic Technology Platform (EU PVTP) in den Jahren bis 2010 jeweils ein Marktwachstum von durchschnittlich 80 %. Um Solarstrom konkurrenzfähig zu machen seien zudem öffentliche Forschungsprogramme erforderlich, kombiniert mit einer Verdoppelung der Mittel für Forschung und Entwicklung. Nur so könnten die ehrgeizigen SRA-Ziele erreicht werden, betont EU PVTP.

Der Solar-Report 11/2007 fasst die wichtigsten Aspekte der SRA zusammen, mit denen die schnelle Entwicklung einer wettbewerbsfähigen Photovoltaik-Technologie von Weltrang unterstützt werden soll. Außerdem werden einige Forschungsansätze beleuchtet, sowohl mit Blick auf die herkömmliche PV-Technologie als auch die Photovoltaik der Zukunft.

Die SRA wurde vorbereitet von der Arbeitsgruppe Wissenschaft, Technologie und Anwendungen der EU PVTP. Sie gründet auf sorgfältigen Beratungen mit Forschungseinrichtungen, Industrie und weiteren Interessengruppen. Die Mitglieder der Arbeitsgruppe sind ausgewiesene Photovoltaik-Experten mit langjähriger Forschungserfahrung in öffentlichen und privaten Einrichtungen.

Forschungs-Fahrplan für die Photovoltaik in Europa bis 2030.
Forschungs-Fahrplan für die Photovoltaik in Europa bis 2030.

Weiterentwicklung von Solarstromanlagen
und Kostensenkung im Mittelpunkt

Die direkte Umwandlung von Sonnenlicht in Strom ist ein äußerst elegantes Verfahren um umweltfreundlich erneuerbare Energie zu gewinnen. Photovoltaikanlagen sind modular aufgebaut und arbeiten leise. Die Photovoltaik kann in einer Vielzahl von Anwendungen eingesetzt werden und wesentlich zur Deckung des künftigen Energiebedarfs beitragen. Obwohl verlässliche, technisch ausgereifte PV-Systeme längst auf dem Markt sind, ist die Weiterentwicklung der Solarstromtechnik von wesentlicher Bedeutung, wenn die Photovoltaik eine der tragenden Säulen der Energieversorgung werden soll.

Die gegenwärtigen Preise netzgekoppelter Solarstromanlagen sind laut EU PVTP bereits niedrig genug, um mit dem Strompreis zu Spitzenlastzeiten zu konkurrieren; auch autarke Solarstromanlagen können zum Beispiel mit dem Preis von Strom aus Dieselgeneratoren mithalten. Doch noch immer ist Solarstrom nicht so günstig wie der Endkunden oder Großhandelspreis.

Deshalb müssen die Kosten schlüsselfertiger Photovoltaikanlagen weiter gesenkt werden, was glücklicherweise möglich sei, betont die Technologieplattform. Dies wurde bereits in einer Veröffentlichung "A Vision for Photovoltaic Technology" des Forschungsbeirats der EU PVTP (PV TRAC) im Jahr 2005 gezeigt. Die Weiterentwicklung ist für die europäische PV-Industrie auch wichtig, um ihre Position auf dem Weltmarkt zu stärken, auf dem ein starker Wettbewerb herrscht und der durch eine hohe Innovationsdynamik gekennzeichnet ist.

Die folgende Tabelle fasst die wesentlichen Ziele der SRA zusammen.

1980 Heute 2015 2030 langfristiges Potenzial
Durchschnittlicher Systempreis ohne Steuern (2006 €/Wp excl. VAT)
>30
5
2.5
1
0.5
Durchschnittliche Solarstromproduktionskosten in Südeuropa (2006 €/kWh)
>2
0.30
0.15*
0.06**
0.03
Durchschnittlicher Wirkungsgrad von Standard-Solarmodulen
bis zu 8%
bis zu 15 %
bis zu 20%
bis zu 25%
bis zu 40%
Durchschnittlicher Wirkungsgrad von Konzentrator-Modulen
(ca.10%)
bis zu 25 %
bis zu 30%
bis zu 40%
bis zu 60%
Durchschnittliche energetische Amortisation in Jahren (Südeuropa)
>10
2
1
0.5
0.25
*wettbewerbsfähig mit Endkundenpreis
** wettbewerbsfähig mit Großhandelspreis

Systempreis im Jahr 2015 zwischen zwei und vier Euro/Wp

Gegenwärtig liegen die Preise schlüsselfertiger PV-Anlagen zwischen vier und acht Euro pro Watt Leistung (Wp), abhängig vom Typ, von der Größe, vom jeweiligen Land und weiteren Faktoren. Fünf Euro pro Watt peak sind laut EU-PVTP aktuell durchaus repräsentativ, die Preise vergleichbarer Systeme im Jahr 2015 könnten sich zwischen zwei und 4 vier Euro/Wp einpendeln. Um statt des Systempreises die Stromproduktionskosten als Grundlage für Vergleiche zu ermitteln, geht die EU PVTP von einer durchschnittlichen "Performance Ratio" von 75 % aus (Verhältnis von Nutzertrag und Sollertrag einer Anlage), das heißt konkret einem Ertrag von 750 Kilowattstunden pro installiertem Kilowatt Leistung und Jahr bei einer jährlichen Sonneneinstrahlung von 1.000 kWh pro Quadratmeter. In Südeuropa mit einer durchschnittlichen Sonneneinstrahlung von 1.700 kWh pro m2 und Jahr entspricht diese Performance Ratio 1.275 kWh pro installiertem Kilowatt Leistung und Jahr. Weiter geht die SRA von einem Prozent Wartungskosten jährlich aus und von einer Abschreibung der Anlage in 25 Jahren.

Solarpark in Spanien: Grid Parity in ganz Europa bis 2020 möglich.
Solarpark in Spanien: Grid Parity in ganz Europa bis 2020 möglich. Quelle: Corporación Energíaj

Grid Parity bis 2020 in ganz Europa

Vor diesem Hintergrund ist das vorrangige und allgemeine Ziel die Wettbewerbsfähigkeit von Solarstrom mit dem Strompreis von Endkunden bis zum Jahr 2015. Weitere Preissenkungen in den folgenden Jahren lassen erwarten, dass die Grid Parity bis 2020 in ganz Europa erreicht wird. Große PV-Kraftwerke, speziell Solarparks, werden Solarstrom generell billiger produzieren müssen, damit von einer Wettbewerbsfähigkeit gesprochen werden kann. Um diese Ziele zur erreichen, zeigt die SRA im Einzelnen auf, was sich bei Solarzellen, Modulen und in der Systemtechnik (z.B. Montage, Wechselrichter etc.) tun muss.

Unterschiedliche Technologien mit großen Potenzialen

Unter den gegenwärtig kommerziell produzierten Technologien gibt es laut EU PVTP keine "Gewinner" oder "Verlierer", denn die Investitionen in Produktionsanlagen, die weltweit getätigt werden zeigen, dass vielen unterschiedlichen Technologien ein großes Potenzial zugesprochen wird. Aus diesem Grund sei es wichtig, eher ein breites als ein schmales Portfolio von Technologien und Optionen zu unterstützen. Der Weiterentwicklung der Photovoltaik sei am besten damit gedient, wenn darauf geachtet wird, in welchem Umfang ein qualifiziertes Forschungsvorhaben zu den Gesamtzielen beitragen kann und wie stark es unterstützt wird.

Mit Blick auf Solarzellen und Module unterscheidet die EU PVTP herkömmliche Technik (Siliziumwafer-basiert, Silizium-Dünnschicht, CIGSS und CdTe) sowie neue Technologien wie beispielsweise die Organische Photovoltaik oder Konzentratorsysteme. Neben dem Preis des Solarstroms sei aber auch dessen Wert von Bedeutung, erinnern die PV-Experten. Der Nutzen des Solarstroms wachse beispielsweise, wenn der Solarstromnachfrage durch Speicherung exakter entsprochen werden kann.


Forschung und Entwicklung der nächsten Jahrzehnte - Herausforderungen für alle Solarzellen- und Modultypen

Die SRA schildert die zentralen Forschungsaufgaben der kommenden Jahre, die im Folgenden schlaglichtartig beleuchtet werden.

Die Forschung und Entwicklung konzentriert sich grundsätzlich auf den Wirkungsgrad, den Energieertrag, die Stabilität und die Haltbarkeit von Photovoltaikanlagen. Dabei geht es vor allem darum, die Kombinationen dieser Parameter zu optimieren, und nicht darum, einzelne Parameter auf Kosten anderer zu steigern. Weil die Forschung jedoch in erster Linie auf eine Kostensenkung abhebt, ist es entscheidend nicht nur auf die Investitionskosten der installierten Leistung zu achten (€/Wp), sondern auch auf die während des kompletten Betriebs möglichen Erträge (kWh/Wp). Eine hochproduktive Fertigung einschließlich laufender Überwachung des Prozesses, des Durchsatzes und der Produktionsleistung sind wichtige Parameter einer kostengünstigen Herstellung und wesentlich zur Erreichung der Kostenziele.

Modul-Reihen des Solarparks Pocking (Bayern)

Modul-Reihen des Solarparks Pocking (Bayern) mit insgesamt 57.912 High-tech-Solarmodulen und einer Spitzenleistung von 10 Megawatt (MWp)

 

Foto: Martin Bucher

Um die Montagekosten weiter zu senken, ist die Angleichung und die Standardisierung der physikalischen und elektrischen Charakteristika von Solarmodulen wichtig. Die einfache Installation sowie die ästhetischen Qualitäten der Module und Systeme sind von herausragender Bedeutung, wenn diese im großen Maßstab in der vom Menschen geprägten Umwelt eingesetzt werden sollen.

Siliziumwafer-basierte Photovoltaik herrscht vor

Vorrangige Forschungsziele der Photovoltaik auf der Grundlage von kristallinem Silizium sind die Reduzierung des Bedarfs an Solar-Silizium und der Materialien für das Modul. Deshalb werden alternative Technologien und Rohmaterialien für die Waferproduktion entwickelt oder herkömmliche Verfahren verbessert. Auch am Ersatz der herkömmlichen Wafer wird gearbeitet. Dabei gilt es, sowohl die Kosten als auch die Qualität im Auge zu behalten. Neue Materialien stehen für die gesamte Wertschöpfungskette auf der Agenda, einschließlich der Versiegelung von Solarzellen.

Seit Beginn der breiten Nutzung der Photovoltaik dominieren Silizium-Solarzellen. Sie sind verfügbar, verlässlich und ihre physikalischen Eigenschaften sind weitgehend erforscht. Die Lernkurve für siliziumbasierte Photovoltaik erstreckt sich über drei Jahrzehnte und zeigt, dass die Kosten mit jeder Verdoppelung der installierten Leistung um 20 % gesunken sind. Zwei Treiber bewirken dies: die Größe der Märkte und technischer Fortschritt. Diese Erfolge sind kein Zufall, sondern Ergebnis der zeitgleichen Kombination von Marktanreizprogrammen, Forschung und Entwicklung sowie Demonstrationsprojekten mit öffentlicher und privater Unterstützung.

Solar-Silizium ilizium-Atomstruktur.
Solar-Silizium; Silizium-Atomstruktur. Fotos: SolarWorld AG, HMI

Wafer werden immer dünner und größer

Die kristallinen Wafer wurden immer dünner: Statt 400 Mikrometer im Jahr 1990 sind ihre Nachfolger 2006 nur noch 200 µm stark und gleichzeitig konnte die Fläche von 100 Quadratzentimetern auf 240 cm2 mehr als verdoppelt werden. Der Wirkungsgrad stieg von 10 % im Jahr 1990 auf gegenwärtig durchschnittlich 13 %, wobei die besten Ergebnisse sogar 17 % übertrafen. Die Hersteller steigerten ihre durchschnittliche Produktion von jährlich 1-5 MWp im Jahr 1990 auf hunderte MWp - und Pläne für Gigawatt-Fabriken wurden bereits angekündigt.

In der industriellen Fertigung soll der Solarsilizium-Vebrauch in der Zeit von 2008 bis 2012 auf 5 g/Wp sinken, die Wafer-Stärke soll weniger als 150 µm betragen. Ab 2020 sollen weniger als 2 g/Wp möglich sein und die Wafer dünner als 100 µm sein.

Modulwirkungsgrad von 25 % als Ziel

Auch bei kristallinen Solarmodulen können ein hoher Produktionsdurchsatz, hohe Produktionsraten und integrierte industrielle Fertigung Kosten sparen. Langfristig stehen auch neue Konzepte für Solarmodule und Zellen auf der Tagesordnung. Laut SRA kann eine Steigerung des Wirkungsgrades um ein Prozent die Kosten um fünf bis sieben Prozent senken. Kleine Solarzellen, die in teuren Reinraumfabriken mit Vakuum-Technologie zur Aufbringung der Metallkontakte produziert wurden, haben bereits Wirkungsgrade von bis zu 24.7 % erreicht. Kurzfristig soll der Modulwirkungsgrad 17 % übertreffen, von 2013 bis 2020 höher als 20 % sein, und bis 2030 werden mehr als 25 % angestrebt.


Dünnschichttechnologie kann langfristig
ein Drittel des Markes erobern

Derzeit hat die Dünnschicht-Photovoltaik einen Marktanteil von weniger als 10 %, laut SRA könnte dieser jedoch bis 2020 auf 20 % steigen und langfristig sogar über 30 % betragen. Möglichkeiten für einen Ausbau der Massenproduktion ergeben sich aus der Verfügbarkeit von Anlagen zur großflächigen Beschichtung sowie den Erfahrungen aus der Glasindustrie und der Produktion von Flachbildschirmen. Die monolithische Serienverschaltung der Solarzellen vereinfacht die Modulfertigung im Vergleich zu waferbasierten Technologien. Außerdem können biegsame und besonders leichte Module aus Kunststoff- oder Metallfolien als Trägermaterial hergestellt und vom Band verarbeitet werden.

Forschung und Industrie konzentrieren sich auf verlässliche, kosteneffektive Produktionsanlagen für alle Arten der Dünnschichtmodule. Kostengünstige Lösungen für starre und flexible Module müssen ebenso entwickelt werden wie preisgünstige Beschichtungen. Die Zuverlässigkeit der Dünnschichtmodule wird durch weiterentwickelte Testverfahren und Leistungsmessungen gewährleistet. Eine besondere Herausforderung liegt im Ersatz knapper Rohstoffe wie beispielsweise Indium.

Anlage zum Strukturieren von Dünnschicht-Solarzellen

Extrem dünne, flexible Solarzelle.

Anlage zum Strukturieren von Dünnschicht-Solarzellen; Extrem dünne, flexible Solarzelle.
Quellen: LPKF Laser & Electronics AG (links), HMI (rechts)

Ab 2012 zwei Gigawatt Dünnschicht-Produktionskapazität jährlich

Die Dünnschichtphotovoltaik hat ein sehr großes Potenzial zur Kostensenkung, wenn Materialien und Fertigung durch intensive und wirksame Grundlagenforschung verbessert werden. Die Herausforderungen für die Dünnschicht liegen laut SRA im Wesentlichen im Ausbau der Produktionskapazitäten. Bis 2010 erwarten Experten eine weltweite Kapazität von einem Gigawatt pro Jahr; und bereits 2012 sollen es zwei GWp jährlich sein. Zum Einsatz kommt die Dünnschicht-PV hauptsächlich in Japan, den USA und vor allem in Europa, das bereits über eine vorzügliche Dünnschicht-Infrastruktur und etliche Produktionsstätten verfügt.

Wenn die Produktion im genannten Umfang wächst, die Moduleffizienz wie geplant gesteigert wird und die Industrie entsprechend kalkuliert, sind laut SRA Systemkosten von 1-1,5 Euro/Wp zu erreichen. Bis 2030 rechnen die Experten sogar mit 0,5 Euro/Wp, wenn intensiv geforscht und entwickelt wird, wobei langfristig kaum Unterschiede hinsichtlich der einzelnen Dünnschichttechnologien zu erwarten seien.

 

PV-Technologien der Zukunft

Kristallines Silizium und die immer weiter etablierte Dünnschicht-Photovoltaik beherrschen heute und auch künftig den Markt. Doch die Forschung darauf zu beschränken ist laut SRA aus zwei Gründen riskant: Zum einen stoßen konventionelle Solarmodule bei etwa 25 % an die Obergrenze des Wirkungsgrades. Und zum anderen würde die europäische Industrie Chancen versäumen, die sich aus dem sprunghaften Technologie-Wandel ergeben.

Die sich abzeichnenden neuen Technologien, die sich zum Teil noch in frühen Entwicklungsstufen befinden, können sowohl auf einem extrem sparsamen Materialeinsatz beruhen, mit dem die wirtschaftliche Effizienz gesteigert werden soll, als auch auf Ansätzen, mit denen der Zell-Wirkungsgrad durch schrittweise Verbesserung der herkömmlichen Solarzellen auf mehr als 25 % erhöht werden soll. Offenheit gegenüber Entwicklungen bei Nanomaterialien und -technologien, in der Halbleitertechnologie sowie in der organischen Elektronik sollten frühzeitig erkannt werden, um deren Chancen auch für die Photovoltaik zu nutzen.

Mit Blick auf neue Technologien wie die Organische Photovoltaik und die Nanotechnologie sind höhere Wirkungsgrade und größere Stabilität bis zum Erreichen der Marktreife der Anwendungen zentrale Ansätze. Verfahren zur Konzentration des Sonnenlichts sowie die Demonstration neuer Prinzipien zur Umwandlung eines größeren Teils der Solar-Spektrums stehen hier im Mittelpunkt. (siehe auch Solar-Report 8/2007: "Organische Photovoltaik: Solarstrom aus hauchdünnen Farb- und Kunststoff-Folien")

Nano-Oberflächentechnologien und Plasma gestützte Verfahren bieten eine große Palette neuer Möglichkeiten zur Texturierung und Beschichtung von Solarwafern. Am Fraunhofer ISE hergestellte, flexible Organische Solarzelle.
Links: Nano-Oberflächentechnologien und Plasma gestützte Verfahren bieten eine große Palette neuer Möglichkeiten zur Texturierung und Beschichtung von Solarwafern. Rechts: Am Fraunhofer ISE hergestellte, flexible Organische Solarzelle. Bildquellen: Fraunhofer-Institut für Werkstoff- und Strahltechnik (IWS); Fraunhofer-Institut für solare Energiesysteme (ISE)

Konzentrator-Photovoltaiksysteme bündeln das Sonnenlicht mit relativ preisgünstigen optischen Systemen (z.B. Fresnel-Linsen) bis zu 1.000-fach. Kombiniert mit den so genannten III-V Solarzellen (Wirkungsgrade bis zu 40 %) eröffnen sich hier neue Marktchancen, denn an guten Standorten sind schon mittelfristig wettbewerbsfähige Solarstrom-Gestehungskosten möglich. Für diese Technologie müssen neue Systeme und optische Komponenten entwickelt werden (Spiegel, Linsen etc.) sowie Montagesysteme für die besonders präzise zu fertigenden Module. Auch bei den Nachführsystemen, die für solche Systeme grundsätzlich erforderlich sind, besteht Forschungs- und Handlungsbedarf.

Demonstrator-Kraftwerk der Concentrix Solar GmbH in Lorca (Spanien).
Demonstrator-Kraftwerk der Concentrix Solar GmbH in Lorca (Spanien). Das konzentrierende PV-System besteht aus insgesamt drei 5,7 kW-Anlagen. Das Projekt dient der Erprobung der FLATCON-Technologie unter realen Betriebsbedingungen und wird gefördert von der Deutschen Bundesstiftung Umwelt (DBU). Bild: Concentrix Solar GmbH
Um den idealen Konzentrationsfaktor auszumachen, müssen die Materialien und Produktionstechnologien für die verwendeten Höchstleistungssolarzellen im Labor und industriell erprobt werden, zum Beispiel für Silizium-Zellen mit einer Effizienz von mehr als 26 % oder die so genannten III-V Solarzellen, die im Labor 45 % und in der industriellen Produktion 35 % bringen. Zusätzlich müssen die Konzentrator-Systeme weiter optimiert und Verfahren zur Integration aller Komponenten entwickelt werden. Tests unter realen Bedingungen und die wirtschaftliche Bewertung der Systeme stehen ebenfalls an.


Europa im internationalen Wettbewerb

Europas PV-Industrie steht im Wettbewerb mit Unternehmen aus Asien, den USA und anderen Teilen der Welt. In Japan und China gibt es staatliche Förderprogramme zur Unterstützung der Photovoltaikindustrie. Japan hat aufgrund langfristiger Förderung und eines stabilen Heimatmarktes einen Weltmarktanteil von rund 50 % erreicht. China verfolgt ebenfalls eine industrielle Strategie zum Aufbau einer konkurrenzfähigen Solarwirtschaft, deren Ergebnisse bereits zu erkennen sind. Chinesische Solarzellen- und Modulproduzenten eroberten rasch beachtliche Marktanteile und die Produktionskapazitäten im Land der Mitte wachsen beispiellos.

Mit dem Solarpark Beneixama (20 MW) führt die deutsche City-Solar-Gruppe die aktuelle Photovoltaik-Weltrangliste an. Solarstromanlage mit Yingli Solar-Modulen auf dem Dach des Fußballstadions in Kaiserslautern.
Links: Mit dem Solarpark Beneixama (20 MW) führt die deutsche City-Solar-Gruppe die aktuelle Photovoltaik-Weltrangliste an. Rechts: Solarstromanlage mit Yingli Solar-Modulen auf dem Dach des Fußballstadions in Kaiserslautern. Quellen: Fotos: City Solar AG; Solar-Energiedach GmbH.

Wenn Europa nicht darauf reagiert, läuft es Gefahr, dass sich die PV-Produktion gemeinsam mit vielen anderen Produktionstechnologien nach China verlagert. Bislang kann Europa dank seiner hoch qualifizierten Forscher und Ingenieure noch mithalten; ohne beständige und verlässliche Förderung von Forschung und Entwicklung durch die öffentliche Hand könnte dieser Vorsprung bald schwinden. Die PV-Industrie in Europa benötige mehr Unterstützung für Innovationen und auch klarere langfristige Förderstrategien, damit weiterhin investiert wird und sichergestellt werden kann, dass die europäischen Unternehmen ihren Marktanteil ausbauen und Weltmarktführer werden können, unterstreicht die SRA.

Weltweite PV-Installationen in Megawatt.
Weltweite PV-Installationen in Megawatt. Der blaue Balken zeigt die Chancen einer aktiven Förderpolitik für die Photovoltaik. Quelle: EPIA
Die komplette Strategic Research Agenda kann als PDF-Dokument heruntergeladen werden unter http://www.eupvplatform.org/fileadmin/Documents/MG_SRA_Complete_070604.pdf. Zusätzliche Informationen zur Forschungsplattform gibt es unter http://www.eupvplatform.org.

Weitere Informationen zur PV- und Nanotechnologie:

Solar-Report 8/2007: "Organische Photovoltaik: Solarstrom aus hauchdünnen Farb- und Kunststoff-Folien"

Nano-Initiative – Aktionsplan 2010. Bundesministerium für Bildung und Forschung

Dünnschicht-Solartechnik: Neue Technologien zur Kostensenkung der Photovoltaik

Photovoltaik-Forschung und -Entwicklung: Innovationen bei Solarzellen und Modulen.

Nano-Initiative – Aktionsplan 2010.
Der Solar-Report basiert auf der SRA-Publikation. Redaktionelle Bearbeitung und Übersetzung: Rolf Hug.
Die Solarbranche entwickelt und produziert ständig neue Lösungen zur Nutzung der Sonnenenergie. Der Solarserver präsentiert diese Innovationen in der Rubrik:
Neue Solar-Produkte

Wir wollen unser Produkt auf dem Solarserver vorstellen
2010 © Heindl Server GmbH