Anzeige

Künstliche Intelligenz für Stromübertragung

Foto: ITIV, KIT

Um die in der Regel volatilen erneuerbaren Quellen in die Energieversorgung zu integrieren, sind höhere Kapazitäten im Stromnetz erforderlich. Der Bedarf an Neubautrassen lässt sich jedoch reduzieren, wenn vorhandene Freileitungen je nach Witterungsbedingungen besser ausgelastet werden können.

Der Bedarf an Neubautrassen lässt sich durch bessere Ausnutzung der vorhandenen Freileitungen deutlich reduzieren. Darum arbeiten Forscherinnen und Forscher am Karlsruher Institut für Technologie (KIT) im Verbundvorhaben „PrognoNetz“ an selbstlernenden Sensornetzwerken, welche die Kühlwirkung des Wetters anhand realer Daten modellieren. So lässt sich bei günstigen Bedingungen mehr Strom über die Leitung schicken.

„Es ist möglich, den Stromtransport je nach Witterungsbedingungen wie Umgebungstemperatur, Sonneneinstrahlung, Windgeschwindigkeit und Windrichtung gegenüber dem Standard deutlich zu erhöhen“, erklärt Professor Wilhelm Stork, Leiter der Mikrosystemtechnik am Institut für Technik der Informationsverarbeitung (ITIV) des KIT. „Diese Erhöhung lässt sich erreichen, ohne die maximal zulässige Leitertemperatur zu überschreiten und ohne die Mindestabstände des Leiters zum Boden oder zu Gegenständen zu unterschreiten.“ Besondere Bedeutung kommt dabei dem von der lokalen Topografie und Vegetation beeinflussten, kühlend wirkenden Wind zu. Storck geht davon aus, dass sich der Stromtransport bei günstigen Bedingungen, das heißt niedriger Außentemperatur oder starkem Wind, um 15 bis 30 Prozent erhöhen lässt.

In PrognoNetz entwickeln die Forschungs- und Industriepartner flächendeckende Sensornetzwerke mit intelligenten Sensoren, die – anders als herkömmliche Wetterstationen – in geringen Abständen zueinander und in hinreichender Nähe von Freileitungen platziert sind, um die Witterungsbedingungen präzise zu erfassen. Die Sensornetzwerke sollen auch harschen Umgebungsbedingungen standhalten und kritische Daten drahtlos und zuverlässig an die Leitzentrale liefern. Neu zu erarbeitende Algorithmen sollen den Sensoren eine selbstlernende Funktion verleihen, sodass sie auf Basis der verteilt gemessenen Wetterdaten automatisiert genauere Strombelastungsprognosen für Stunden oder sogar Tage erstellen können. Anhand historischer Wetterdaten und topografischer Eigenschaften werden intelligente Modelle für jede Leitung des Stromnetzes gebildet. Die Wissenschaftlerinnen und Wissenschaftler arbeiten unter anderem an den Prognosemodellen auf der Basis Künstlicher Intelligenz sowie an einem laserbasierten Windsensor, der genauer misst als starr montierte konventionelle Sensoren, und an unbemannten Drohnen zur Installation und Wartung der Wettersensoren auf den Strommasten.

An dem Verbundvorhaben „PrognoNetz – Selbstlernende Sensornetzwerke zum witterungsabhängigen Freileitungsbetrieb“ sind auch der Wetterdienst UBIMET GmbH Karlsruhe, der baden-württembergische Übertragungsnetzbetreiber TransnetBW GmbH mit Sitz in Stuttgart, das IT-Unternehmen unilab AG Paderborn, die GWU-Umwelttechnik GmbH Erftstadt und die Wilmers Messtechnik GmbH Hamburg beteiligt. Das vom Bundesministerium für Wirtschaft und Energie geförderte Projekt ist Anfang 2019 gestartet und läuft drei Jahre.

24.4.2019 | Quelle: KIT | solarserver.de © EEM Energy & Environment Media GmbH

Bleiben Sie auf dem Laufenden und erhalten Sie täglich die wichtigsten Solar-News direkt in Ihr E-Mail-Postfach. Pünktlich um 15:30 Uhr.

Natürlich finden Sie auch hier auf der Website weitere aktuelle Solar-Nachrichten.