Energiespeicher-Forschung: Batterie im Röhrchen löst altes Problem von Festoxidbrennstoffzellen
Forscher an der Technischen Universität Nanjing und der Curtin University von Perth beschreiben nun in der Zeitschrift Angewandte Chemie eine neuartige ionenleitende Keramikmembran, die vollständig dicht für alle anderen Gase, aber hoch durchlässig für CO2 ist. In eine röhrchenförmige Festoxidbrennstoffzelle mit Kohlenstoff als Energieträger eingebaut, lässt sich das CO2 effizient abziehen, und die Leistung der Zelle steigt.
Batterien sind allgegenwärtige, aber keineswegs optimale Stromversorger. Verbesserungswürdig sind nach wie vor die Energiedichte und Sicherheit, ein Thema insbesondere für die verbreiteten Lithiumionenakkumulatoren.
Kohlenstoff-Luft-Batterie mit hochinteressanter Leistungsdichte und Betriebsspannung
Zongping Shao und Kollegen gehen jedoch einen anderen Weg und entwickeln die Festoxidbrennstoffzelle (SOFC) weiter. In ihrer neuartigen "Kohlenstoff-Luft-Batterie" dient fester Kohlenstoff als Energieträger, dessen Reservoir röhrenförmig von der Anode umkleidet wird. Das herausragende Merkmal dieser elektrochemischen Zelle ist aber ihr Abschluss nach oben durch eine besondere Keramikmembran, die nur CO2 durchdringen kann und das Gas effektiv abtrennt.
CO2 wird in der elektrochemischen Zelle an der positiven Elektrode gebildet. Es reagiert mit Kohlenstoff zu gasförmigem Kohlenmonoxid, dem eigentlichen Brennstoff. Dessen rasche Diffusion zur Anode ermöglicht eigentlich hohe Reaktionsgeschwindigkeiten, aber das anwesende CO2 bremst diesen Vorgang.
Bislang war es sehr aufwändig, das CO2 effizient abzutrennen. Keramische Membranen können zwar eine hohe Leitfähigkeit für Carbonat bieten, aber eine effiziente CO2-Durchlässigkeit hängt in dem Fall vor allem von der Leitfähigkeit für die Sauerstoffionen ab, wie die Autoren herausgefunden haben. Als neues Material wählten sie daher samariumdotiertes Ceroxid (SDC), das stark ionenleitend ist und nach einem Sintervorgang ein Gerüst mit hervorragenden Leitungswegen für Sauerstoffionen bildete. Die Gerüstleerräume wurden mit geschmolzenem Carbonat gefüllt, und im Ergebnis erhielten die Wissenschaftler eine stark verdichtete Zweiphasenmembran aus SDC-Carbonat. Diese Membran war nicht nur absolut dicht gegenüber Gasen, sondern auch, abhängig von der Temperatur, hoch durchlässig für CO2.
SOFC vor allem für eine tragbare Stromversorgung interessant
"Dass die Durchlässigkeit so stark erhöht war, liegt wahrscheinlich an der stark verbesserten Verdichtung der Membran durch unsere neue Technik", betonen die Autoren. Ihre Kohlenstoff-Luft-Zelle erreichte bei den typischen Betriebstemperaturen für SOFCs von bis zu 850 °C eine hochinteressante Leistungsdichte und Betriebsspannung. Als Anwendungsbereiche haben die Forscher vor allem eine tragbare Stromversorgung im Blick.
02.02.2015 | Quelle: Angewandte Chemie | solarserver.de © EEM Energy & Environment Media GmbH