DLR brennt Zement mit Solarenergie

Foto: DLR
Solarforscher des Deutschen Zentrums für Luft- und Raumfahrt (DLR) haben für den Produktionsprozess von Zement untersucht, wie Solarenergie fossile Energieträger ersetzen kann. Sie haben im Solarsimulator am DLR-Institut für Solarforschung in Köln den erste Schritt der Herstellung, die Kalzinierung von Zementrohmehl, in einem Drehrohrofen erfolgreich getestet.

Zement ist eines der am häufigsten verwendeten Güter weltweit. Seine Produktion erfordert hohe Temperaturen, die überwiegend durch die Verbrennung fossiler Rohstoffe erzeugt werden. Eine "Solarisierung" dieses Prozesses würde somit einen wichtigen Beitrag zur Reduktion von globalen Emissionen bewirken.
Die Hauptabnehmer für eine derartige Technologie wären die Branntkalk-, Phosphat- und vor allem die Zementindustrie. Alle drei sind große Industriezweige, in denen die Kalzinierung der Rohstoffe essentiell ist. Die größte Industrie, die die Kalzinierung betreibt, ist die Zementindustrie. Dafür werden zwei Drittel der im Prozess eingesetzten Brennstoffe verbraucht. Zement ergibt mit Wasser gemischt den Baustoff Beton, der nach Wasser das weltweit am zweithäufigsten verwendete Gut ist. Aus diesem Grund ist diese Industrie für ca. 9 Prozent der weltweiten CO2-Emissionen verantwortlich. Die Hälfte davon kommt dabei durch die Reaktion, die andere Hälfte durch den Einsatz der Brennstoffe zustande. Durch das Wachstum der Schwellenländer wird mit einem weiteren Anstieg der Zementbedarfs und damit der CO2-Emissionen gerechnet. Derzeit werden für die Kalzinierung nicht nur fossile Brennstoffe eingesetzt, sondern auch Abfälle und alte Autoreifen.
Test belegen Eignung des Verfahrens
Die Tests im Zeitraum zwischen Dezember 2018 und Januar 2019 im Kölner Solarsimulator wurden jetzt abgeschlossen. Der rotierende Reaktor kann sowohl mit natürlichem als auch mit künstlichem Licht betrieben werden, jedoch entschieden sich die Forscher auf Grund der geringen Sonnenstunden im Winter für den Simulator: "Der Hauptzweck des Simulators ist es, kontinuierliche Bedingungen zu haben. Nach der Charakterisierung und Optimierung des Reaktors unter diesen Bedingungen, ist es möglich, diesen mit wenigen Einstellungen in den Parametern an reale Bedingungen anzupassen, wie zum Beispiel mit der Anpassung des Materialflusses", sagt Gkiokchan Moumin, der zu diesem Projekt am Institut für Solarforschung seine Doktorarbeit schreibt.
Ziel der Kampagne war es, den zuverlässigen und mehrstündigen Betrieb des Reaktors über mehrere Tage verteilt zu demonstrieren. Das Rohmaterial wurde dazu im Drehrohrofen mit unterschiedlichen Flussraten bis zu einer Temperatur von 1000 Grad Celsius erhitzt – die Temperatur, bei der die entscheidende chemische Reaktion einsetzt. Dabei gelang es den Wissenschaftlern, kalziniertes Zementrohmehl in derselben Produktqualität zu produzieren wie es mit konventionellen Reaktoren möglich ist.
"Die Handhabung mit dem Material war dabei die größte Herausforderung. Wir verarbeiteten sehr feines Zementrohmehl, das als Ausgangsmaterial der Produktion gilt. Die Fließfähigkeit dieses Materials ist sehr begrenzt und es bei 1000 Grad Celsius zu verarbeiten ist schwer. Durch das Mehl erzeugter Staub muss ebenfalls berücksichtigt und minimiert werden", so Moumin.
Zuvor wurde in ersten Tests im Rahmen des SOLPART-Projekts gezeigt, dass sich der Drehrohrofen als ein sehr robuster Reaktor erwies, mit dem es möglich war und ist, Partikel verschiedener Größen zuverlässig auf eine beliebige Temperatur bis zu 1100 Grad Celsius zu erhitzen. Es zeigte sich bereits ein breites Anwendungsspektrum für den Einsatz konzentrierter Solarenergie für verschiedene chemische Prozesse. Die Optimierung und Erweiterung dieses Reaktortyps könnte ein wichtiger Schritt auf dem Weg zur Einführung von Solarenergie für jegliche Hochtemperatur-Anwendung zur Herstellung von verarbeiteten Partikeln sein und dies nicht nur in Europa: "Der Betrieb ist nicht nur in Südeuropa, sondern auch in Entwicklungsländern denkbar, da der Zementbedarf lokal gedeckt werden muss und somit lange Transportrouten aus anderen Regionen nicht wirtschaftlich wären".
SOLPART ist seit Anfang 2016 ein Gemeinschaftsprojekt von zehn europäischen Partnern aus Forschung und Industrie und wird im EU-Programm Horizon 2020 gefördert.
https://www.solpart-project.eu 
1.2.2019 | Quelle: DLR | solarserver.de © EEM Energy & Environment Media GmbH

Beliebte Artikel

Schließen