Neue Silizium-Solarzellenkonzepte für mehr Effizienz; Forscher des Fraunhofer ISE erreichen Wirkungsgrade über 20 % mit Siebdrucktechnologie

Um die Kosten für Strom aus Sonnenlicht zu senken, arbeitet das Fraunhofer ISE mit Nachdruck daran, den Wirkungsgrad von Solarzellen zu steigern. Ziel ist es, durch neue Solarzellen-Konzepte auf Basis industrienaher Herstellungsprozesse möglichst viel Sonnenlicht in Strom umzuwandeln.

Insbesondere bei Solarzellen aus Silizium bietet die Kombination industrieerprobter Verfahren, z. B. Siebdruck, mit neuer Zellarchitektur, z. B. Rückseitenkontaktierung, enormes Potenzial für die Wirkungsgradsteigerung und Kostensenkung.

Rückseitenkontaktierte Silizium-Solarzellen mit bis zu 20,2 % Wirkungsgrad
Am Photovoltaik Technologie Evaluationscenter PV-TEC des Fraunhofer-Instituts für Solare Energiesysteme ISE werden solche neuen Konzepte seit mehreren Jahren vorangetrieben. Für rückseitenkontaktierte Silizium-Solarzellen wurden Wirkungsgrade bis zu 20,2 % erzielt.
"Wir freuen uns zum fünfjährigen Jubiläum des PV-TEC diese herausragenden Ergebnisse präsentieren zu können. Wir sehen, dass die Lernkurve in der Silizium-Photovoltaik weiterhin sehr steil nach oben zeigt", so Projektleiter Dr.-Ing. Daniel Biro.

Vorderseitenkontakt auf die Rückseite der Solarzelle verlegt; Verspiegelung optimiert und Oberfläche passiviert
In den so genannten MWT-PERC Solarzellen wurden zwei Effizienz steigernde Ansätze vereint. MWT (Metal Wrap Through) steht für eine Verlagerung des externen Vorderseitenkontakts auf die Rückseite der Solarzelle. Dadurch nimmt der Lichteinfang auf der Vorderseite und damit die Solarzelleneffizienz zu.
PERC (Passivated Emitter and Rear Cell) beschreibt die optimierte Verspiegelung der Solarzellenrückseite sowie die Passivierung der Oberfläche, wodurch die Effizienz weiter steigt. Der siebgedruckte Aluminium-Rückseitenkontakt wird dabei durch lokales Laserlegieren (Laser Fired Contacts, LFC) mit dem p-dotierten Silizium-Material verbunden.
Erst vor kurzem wurden am PV TEC des Fraunhofer ISE großformatige PERC-Solarzellen (Kantenlänge 156 mm, mit Lötkontaktflächen auf der Rückseite) aus monokristallinem Czochralski- Silizium mit einem Wirkungsgrad von 19,3 % hergestellt.

Floatzone-Siliziummaterial steigert Wirkungsgrad von MWT PERC-Solarzellen auf 20,2 %
Entscheidend für noch höhere Wirkungsgrade ist die verringerte Abschattung, die durch Integration des MWT-Ansatzes ermöglicht wird. Die Effizienz steigt damit für MWT PERC-Solarzellen auf 19,4 %. Durch den Einsatz von hochwertigem Floatzone-Siliziummaterial konnten die Wissenschaftler den Zellwirkungsgrad abermals steigern: Mit 20,2 % wurde der bislang höchste Wirkungsgrad für großformatige Solarzellen gemessen, die mittels kostengünstigen und industriell verwendbaren Siebdruck-, Diffusions- und Oxidationsverfahren hergestellt wurden.
Die Solarzellen haben die Kantenlänge des Ausgangsmaterials von 125 mm. Zur Modulverschaltung weisen die Solarzellen rückseitige Lötkontaktflächen beider Polaritäten auf. Das Know-how für die Herstellung der MWT-PERC-Solarzellen wird bereits an mehrere deutsche Solarzellenhersteller übertragen.

Emitter auf der Rückseite eröffnet Kosteneinsparungspotenzial
Auch für rückseitig kontaktierte und sammelnde Solarzellen aus n-dotiertem, monokristallinem Floatzone-Siliziummaterial konnte das Team des PV-TEC einen Wirkungsgrad von 20,0 % erzielen. Die schnelle Entwicklung dieser anspruchsvollen, so genannten BC-BJ Solarzellen (Back Contact Back-Junction) konnte durch die sehr gute Zusammenarbeit mit dem ETAlab des Fraunhofer ISE erzielt werden.
Die hergestellten BC-BJ Solarzellen haben zwar zunächst eine Aperturfläche von 37 x 45 mm², allerdings erlauben alle verwendeten Technologien einen Übertrag auf große Formate. Beim BC-BJ Solarzellentyp befinden sich nicht nur beide Metall- Polaritäten auf der Rückseite der Solarzelle, sondern – im Unterschied zum MWT-PERC Konzept – auch der einsammelnde Emitter.
Die Abschattungsverluste auf der Vorderseite können so nochmals reduziert werden und bieten ein sehr hohes Effizienz- und damit langfristig enormes Kosteneinsparungspotenzial. Sowohl die Metallisierung mit einlegiertem Aluminiumemitter als auch die Strukturierungsschritte werden mit reiner Siebdrucktechnologie realisiert.
"Besonders relevant ist für uns, dass der einlegierte Aluminiumemitter ein so hohes Potenzial aufweist. Wir sehen hier sogar noch zahlreiche Möglichkeiten, den Wirkungsgrad zu steigern", so Robert Woehl, Doktorand am Fraunhofer ISE.

exzellente Wirkungsgrade mit industriell etablierter Produktionstechnologie
Beide Solarzellentypen wurden vollständig mit industrienahen Anlagen der PV-TEC Pilotlinie (www.pvtec.de) hergestellt und ihre Wirkungsgrade vom CalLab PV Cells, dem zertifizierten Kalibrierlabor für Solarzellen am Fraunhofer ISE, bestätigt.
"Es ist damit gelungen, basierend auf der industriell etablierten Produktionstechnologie exzellente Wirkungsgrade über 20 % zu demonstrieren, ein wichtiger Meilenstein für weitere Kostensenkungen in der Photovoltaik", so Dr.-Ing. Ralf Preu, Bereichsleiter PV Produktionstechnologie und Qualitätssicherung und gesamtverantwortlich für das PV-TEC.
"Die öffentliche Förderung des Bundes und der EU verbunden mit unserer intensiven Zusammenarbeit mit Solarzellen-, Anlagen- und Materialherstellern ermöglichten diesen wegweisenden Erfolg."
Auf der SiliconPV – 1st International Conference on Silicon Photovoltaics vom 17. – 20. April 2011 in Freiburg werden beide Solarzellenkonzepte vorgestellt: www.siliconpv.com

13.04.2011 | Quelle: Fraunhofer ISE | solarserver.de © EEM Energy & Environment Media GmbH

Beliebte Artikel

Schließen