Speicherforschung: Neuartige Membran verdoppelt Lebensdauer der Lithium-Batterie

Zu sehen ist eine Lithium-Batterie, die durch die Kohlenstoff-Nanomembran eine gesteigerte Lebensdauer aufweist.Foto: Sathish Rajendran / WSU
Lithium-Batterien, die die Forscher:innen mit durch Kohlenstoff-Nanomembranen modifizierte Separatoren ausgestattet haben.
Eine zweidimensionale Separatormembran kann das Entstehen von Lithium-Dendriten verhindern und dadurch die Lebensdauer einer Lithium-Batterie verdoppeln. Das haben Chemiker der Universität Jena herausgefunden.

Lithium-Dendriten – kleine, nadelartigen Strukturen, die ähnlich Stalagmiten in einer Tropfsteinhöhle an der Lithium-Metall-Anode wachsen, können eine Lithium-Metall-Batterie zerstören. Denn Dendriten breiten sich oft so weit aus, bis sie die Separatormembran, die die Elektroden voneinander trennt, durchstoßen, was zu einem Kurzschluss führt. Seit vielen Jahren suchen Experten weltweit nach einer Lösung für dieses Problem. Wissenschaftlern der Friedrich-Schiller-Universität Jena ist es nun gemeinsam mit Kolleginnen und Kollegen aus Boston und Detroit gelungen, die Dendritenbildung zu unterbinden und somit die Lebensdauer der Lithium-Batterie mindestens zu verdoppeln.

Homogener Ionentransport gut für Lebensdauer der Lithium-Batterie

Während des Ladungstransfers bewegen sich die Lithium-Ionen zwischen Anode und Kathode hin und her. Immer wenn sie ein Elektron aufnehmen, lagern sie ein Lithium-Atom ab. Diese Atome reichern sich an der Anode an und es bildet sich eine kristalline Oberfläche, die dort, wo sich die Atome ansammeln, dreidimensional wächst und so die Dendriten bildet. Die Poren der Separatormembran beeinflussen die Keimbildung der Dendriten. Ist der Ionentransport homogener, kann das Entstehen der Dendriten vermieden werden.

„Deshalb haben wir eine extrem dünne, zweidimensionale Membran aus Kohlenstoff auf den Separator aufgebracht, deren Poren einen Durchmesser von weniger als einen Nanometer haben“, erklärt Andrey Turchanin von der Universität Jena. „Diese winzigen Öffnungen sind kleiner als die kritische Keimgröße und verhindern so die Keimbildung, die das Wachsen der Dendriten auslöst. Anstatt dendritische Strukturen zu bilden, lagert sich das Lithium als glatter Film auf der Anode ab.“ Die Gefahr, dass die Separatormembran dadurch beschädigt werde, bestehe nicht – die Funktionalität der Batterie werde nicht beeinträchtigt.

„Um unsere Methode zu überprüfen, haben wir Testbatterien, die mit unserer Hybrid-Separator-Membran ausgestattet waren, immer wieder aufgeladen“, sagt Antony George von der Universität Jena. „Selbst nach Hunderten von Lade- und Entladezyklen konnten wir kein dendritisches Wachstum feststellen.“

„Die Schlüsselinnovation hier ist die Stabilisierung der Elektroden-Elektrolyt-Grenzfläche mit einer ultradünnen Membran, die den aktuellen Batterieherstellungsprozess nicht verändert“, sagt Leela Mohana Reddy Arava von der Wayne State University in Detroit. „Die Stabilität der Grenzfläche garantiert eine Verbesserung der Leistung und die Sicherheit dieses elektrochemischen Systems.“

Zum Patent angemeldet

„Der Separator bekommt im Vergleich zu den anderen Komponenten der Batterie am wenigsten Aufmerksamkeit“, sagt Sathish Rajendran von der Wayne University. „Das Ausmaß, in dem eine nanometerdicke zweidimensionale Membran auf dem Separator einen Unterschied in der Lebensdauer einer Lithium-Batterie machen könnte, ist faszinierend.“

Das Forscherteam ist zuversichtlich, dass ihre Erkenntnisse das Potenzial haben, eine neue Generation von Lithiumbatterien hervorzubringen. Deshalb haben sie ihr Verfahren zum Patent angemeldet. In einem nächsten Schritt soll nun geprüft werden, wie sich die Anwendung der zweidimensionalen Membran in den Herstellungsprozess integrieren lässt. Zudem wollen die Forschenden die Idee auch auf andere Batterietypen anwenden.

19.6.2021 | Quelle: Universität Jena | solarserver.de © Solarthemen Media GmbH

Beliebte Artikel

Schließen