Hürde zu Hochvolt-Kathoden für Lithiumionen-Akkus überwunden

Wundermittel: Pinkfarbenes, mikrokristallines Lithium-Kobaltphosphat-Pulver. Foto: TUM
Dr. Jennifer Ludwig von der Technischen Universität München (TUM) hat ein Verfahren entwickelt, mit dem sich das vielversprechende Hochvolt-Kathodenmaterial Lithium-Kobaltphosphat schnell, einfach, günstig und in höchster Qualität herstellen lässt. Für ihre Arbeit erhielt die Chemikerin den Evonik Forschungspreis.

Dr. Jennifer Ludwig von der Technischen Universität München (TUM) hat ein Verfahren entwickelt, mit dem sich das vielversprechende Hochvolt-Kathodenmaterial Lithium-Kobaltphosphat schnell, einfach, günstig und in höchster Qualität herstellen lässt. Für ihre Arbeit erhielt die Chemikerin den Evonik Forschungspreis.
Lithium-Kobaltphosphat gilt unter Batterieforschern seit einiger Zeit als Material der Zukunft. Es arbeitet bei höherer Spannung als das bisher verwendete Lithium-Eisenphosphat und erreicht daher eine höhere Energiedichte – 800 Wattstunden pro Kilogramm statt bisher knapp 600 Wattstunden.
Bisher war die Herstellung des vielversprechenden Hochvolt-Kathodenmaterials jedoch aufwändig, energieintensiv und wenig effizient: Man benötigte drastische Bedingungen mit Temperaturen von 900 Grad.
„Die Kristalle, die sich unter diesen extremen Bedingungen bilden, sind zudem unterschiedlich groß und müssen in einem zweiten energieintensiven Schritt erst zu nanokristallinem Pulver vermahlen werden“, berichtet Ludwig.
Die entstehenden Körnchen besitzen zudem nur in einer Richtung genügend ionische Leitfähigkeit. Auf dem größten Teil der Oberfläche läuft die chemische Reaktion zwischen Elektrodenmaterial und Elektrolyt im Akku nur schleppend ab.
Die von Jennifer Ludwig entwickelte Mikrowellen-Synthese soll all diese Probleme auf einen Schlag lösen: Für die Gewinnung von hochreinem Lithium-Kobaltphosphat benötigt man nur ein kleines Mikrowellen-Gerät und eine halbe Stunde Zeit.
Die Reagenzien werden zusammen mit einem Lösungsmittel in einem Teflon-Behälter erhitzt. 600 Watt Leistung reichen aus, um die notwendige Temperatur von 250 Grad zu erzeugen und die Kristallbildung anzuregen.
Die sich dabei bildenden flachen Plättchen haben einen Durchmesser von weniger als einem Mikrometer, eine Dicke von wenigen hundert Nanometern, und die Achse höchster Leitfähigkeit ist in Richtung Oberfläche orientiert. „Diese Form sorgt für eine bessere elektrochemische Leistungsfähigkeit, weil die Lithium-Ionen nur kurze Wege im Kristall zurücklegen müssen“, erläutert Ludwig.
Die Chemikerin konnte bei ihren Experimenten ein weiteres Problem lösen: Bei Temperaturen von über 200 Grad und unter hohem Druck entsteht mitunter nicht das gewünschte Lithium-Kobaltphosphat, sondern ein bisher unbekanntes, komplexes Kobalt-Hydroxid-Hydrogenphosphat.
Jennifer Ludwig gelang es, den Reaktionsweg aufzuklären, die chemische Verbindung zu isolieren und dessen Struktur und Eigenschaften zu bestimmen. Da die neue Verbindung als Batteriematerial ungeeignet ist, modifizierte sie die Reaktionsbedingungen so, dass nur das gewünschte Lithium-Kobaltphosphat entsteht.
Unterstützt wurde Ludwigs Arbeit von der TUM Graduate School, BMW, sowie dem Fonds der Chemischen Industrie. Die Untersuchung elektrochemischer Eigenschaften erfolgte in Kooperation mit dem Lehrstuhl für Technische Elektrochemie der TU München. Struktur und Eigenschaften des komplexen Kobalt-Hydroxid-Hydrogenphosphats wurden in Zusammenarbeit mit dem Lawrence Berkeley National Laboratory (LBNL), der Stanford Synchrotron Radiation Lightsource (SSRL) und dem Walther-Meißner-Institut (WMI) untersucht. Für die Entwicklung ihres neuen Synthese-Verfahrens erhielt Jennifer Ludwig den Evonik-Forschungspreis, den der Chemie-Konzern jährlich an herausragende Nachwuchswissenschaftler vergibt.

19.10.2017 | Quelle: TUM | solarserver.de © EEM Energy & Environment Media GmbH

Beliebte Artikel

Schließen