Forschung: Energiespeicher vereint Batterie und Elektrolyseur

Ein Forschungsverbund um die TU Berlin präsentiert einen Energiespeicher, der die Eigenschaften von Batterie und Elektrolyseur zusammenführt. Es handelt sich dabei um eine Zink-Wasserstoff-Batterie. Sie könne laut TU Strom mit einem hohen Wirkungsgrad speichern kann und beim Entladen auch Wasserstoff freisetzen. Dies gelinge durch eine Kombination der negativen Zink-Elektrode der Batterie mit dem Prinzip der alkalischen Wasser-Elektrolyse. Als positive Gegenelektrode kommt dabei eine spezielle Wasserstoff/Sauerstoff-Gaselektrode zum Einsatz, die als Elektrokatalysator dient. Erste Tests des neuen Energiespeichers ergaben einen Wirkungsgrad von 50 Prozent bei der Stromspeicherung und 80 Prozent bei der Wasserstofferzeugung. Die Lebensdauer liege bei prognostizierten zehn Jahren.
„In der öffentlichen Wahrnehmung standen bisher Batterie- und Wasserstofftechnologien in Konkurrenz miteinander“, sagt Prof. Dr. Peter Strasser, Leiter des Fachgebiets „Electrochemical Catalysis, Energy and Materials Sciences“ an der TU Berlin. „Der neue Ansatz unseres Konsortialprojekts zeigt, dass es sich lohnt, diese Denkweise zu hinterfragen und sich stattdessen das Beste aus beiden Welten herauszusuchen.“
Elektrode spaltet Wasser
„Herzstück unserer neuen Kombi-Batterie ist eine katalytisch aktive, bifunktionelle Gaselektrode“, erklärt Strasser. Sie befindet sich zusammen mit der negativen Zink-Elektrode in einem flüssigen Elektrolyten aus Kaliumhydroxid und Wasser, also Kalilauge. Beim Entladevorgang spaltet der Katalysator der Gaselektrode von den Wassermolekülen (H2O) Wasserstoffmoleküle (H2) ab. Dieser Wasserstoff lässt sich auch speichern. Gleichzeitig wandern elektrisch negative OH-Ionen im Elektrolyten zur Zink-Elektrode. Dort reagieren sie mit dem Zink und bilden Zinkoxid (ZnO) und Wasser unter Abgabe von Elektronen. Dieser Entladevorgang liefert also gleichzeitig nutzbare elektrische Energie und Wasserstoffgas.
„Erst beim Wiederaufladen der Batterie vollzieht sich der zweite Teil der Elektrolyse, die Abgabe von Sauerstoff“, so Strasser. Mit Hilfe von elektrischer Energie und Elektronen von außen reduziert die Zinkoxid-Elektrode wieder zu metallischem Zink. Dabei bilden sich OH-Ionen, die jetzt zur Gaselektrode wandern und dort der Katalysator in Wasser umgesetzt. Dabei entweicht auch Sauerstoff (4 OH → 2 H2O + O2). Damit diese Prozesse kontinuierlich ablaufen können, gilt es, dem neuen Energiespeicher Wasser in der Menge zuzuführen, in der Wasserstoff und Sauerstoff entweichen.
Zehnmal günstiger als Lithium-Ionen
Gegenüber herkömmlichen Lithium-Ionen-Akkus verwendet die neue Batterie ausschließlich wesentlich preiswertere Rohstoffe (Stahl, Zink, Kaliumhydroxid, Wasser), die nur etwa ein Zehntel so teuer sind. Zudem machen sie die Batterie leicht recycelbar.
Erste Tests am Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration (IZM) zeigten bereits sehr gute Wirkungsgrade des neuen Akkus. Mit einem Gesamtwirkungsgrad der „Strom-zu-Strom“-Speicherung von 50 Prozent ist dieser doppelt so hoch wie bei den meisten Power-to-Gas-Technologien, die zunächst Strom zu Wasserstoff und danach der Wasserstoff wieder in Strom zurückwandeln. Bei der Wasserstofferzeugung liegt der Wirkungsgrad sogar bei 80 Prozent. Zudem legen die Labortests eine Lebensdauer der Systeme von etwa zehn Jahren nahe.
Demonstrator bis Ende 2023
„Die TU Berlin hat in das Konsortium vor allem unsere Erfahrung in der alkalischen Wasserelektrolyse eingebracht sowie unsere langjährige Expertise in der Katalysatortechnik“, erklärt Peter Strasser. Die Forscher*innen wollen nun bis Ende des Jahres einen Demonstrator aufbauen und Zuverlässigkeitstests durchführen. Die Lade- und Entladeparameter müssen dabei so optimiert werden, dass über mehrere Tausend Zyklen ein stabiler Betrieb möglich ist. Über die ebenfalls am Konsortium beteiligte Firma Zn2H2 GmbH, die bereits mehrere Patente auf das Verfahren angemeldet hat, wäre bei positiven Resultaten aus den Demonstrator-Experimenten eine rasche Umsetzung in den Markt gewährleistet.
Die weiteren Konsortialpartner des Projekts sind die Steel PRO Maschinenbau GmbH, das Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung (IFAM) sowie das Fritz-Haber-Institut der Max-Planck-Gesellschaft. Das Projekt mit dem Kürzel „Zn-H2“ wird unter der Fördernummer 03SF0630A vom Bundesministerium für Bildung und Forschung (BMBF) gefördert und läuft noch bis September 2025.
10.10.2023 | Quelle: TU Berlin | solarserver.de © Solarthemen Media GmbH